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Abstract-It is shown tha': the second theorem in the previous paper [Nakamura and Takewaki
(1989) Optimal elastic structures with frequency-dependent elastic supports. International Journal
of Solids and Structures 25(5), 539-5511 can be extended to a more general case where there is no
special restriction on the characteristics of frequency-dependent stiffnesses except their positive
definiteness and a characteristic as a single-valued function. This theorem enables one to disclose
the relationship between the design space of elastic structures with frequency-dependent stiffnesses
and that of elastic structures with the corresponding frequency-independent stiffnesses, both with
respect to fundamental natural frequency. It facilitates not only clarification oflowest-mode quali
fication conditions for the frequency-dependent model with the help of the frequency-independent
model, but also use of the modal analysis technique via the substitute model (the frequency
independent model). © 1998 Elsevier Science Ltd.

1. INTRODUCTION

Fundamental features of an elastic structure including members with frequency-dependent
stiffnesses have been disclosed for the first time in the previous paper (Nakamura and
Takewaki, 1989). Two new theorems have been introduced and proved in the case where all
the frequency-dependent stiffnesses are expressed as single-valued non-increasing positive
functions of frequency. Those two theorems have been utilized for establishing one-to-one
correspondence between the design spaces of an ordered set of elastic frames supported by
members with frequency-dependent stiffnesses and of the corresponding ordered set of
elastic frames supported by those with the corresponding frequency-independent stiffnesses,
both with respect to fundamental natural frequency. The optimal solution to a problem of
optimum design of the former frames subject to an equality constraint on fundamental
natural frequency has been shown to coincide with that of the latter frames (Nakamura
and Takewaki, 1989). It has also been shown there that the optimal solution to the problem
of optimum design of the former frames for specified fundamental natural frequency is also
the optimal solution to the problem subject to the corresponding inequality constraint on
fundamental natural frequency under the same restriction on supporting members.

It is noticeable that, while an iterative algorithm, e.g. the determinant-search procedure,
is necessary in finding eigenvalues of an elastic structure including members with frequency
dependent stiffnesses, no such iterative algorithm is required in a hybrid inverse eigenmode
problem (Takewaki and Nakamura, 1995, 1997; Takewaki, 1996; Takewaki et al., 1996).
This merit results from the fact that the stiffness of a frequency-dependent member is
determined directly by the specification of a fundamental natural frequency in the context
of the inverse problem. This advantage facilitates the formulation of a hybrid inverse
eigenmode problem for frequency-dependent structures. After the determination of stiff
nesses of the frequency-dependent members, a theory (Takewaki and Nakamura, 1997) of
hybrid inverse eigenmode I'roblems for the frequency-independent model can be applied to
the frequency-dependent model. However, it is absolutely necessary in such a case to
disclose the relation betwel:ll the design space of the frequency-dependent model and that
of the corresponding frequency-independent model with respect to fundamental natural
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"Fig. I. Elastic structure consisting of elastic members or elements with frequency-independent
stiffnesses S ,., {S;} and those with frequency-dependent stiffnesses B(O) = {BiO)}.

frequency. It should also be pointed out here that Gladwell's pioneering work (Gladwell,
1986) in the field of fully inverse eigenmode problems exists.

The purpose of tlis paper is to show that the second theorem in the previous paper
(Nakamura and Takewaki, 1989) can be extended to a more general case where there is no
special restriction on the characteristics of frequency-dependent stiffnesses except their
positive definiteness and a characteristic as a single-valued function. This new theorem
discloses that the design space ofelastic structures including elastic members with frequency
dependent stiffnesses with respect to fundamental natural frequency is included within that
of elastic structures with the corresponding frequency-independent stiffnesses. It is further
shown that the new theorem facilitates not only clarification of lowest-mode qualification
conditions for the frequency-dependent model with the help of the frequency-independent
model, but also use of the modal analysis technique via the substitute model (the frequency
independent model).

2. A NEW THEOREM ON FREQUENCY-DEPENDENT AND FREQUENCY-INDEPENDENT
STRUCTURES

Consider an elastic structure, as shown in Fig. 1, consisting of elastic members or
elements with frequen::y-independent stiffnesses S = {SJ and those with frequency-depen
dent stiffnesses B(n) = {Bin)}. It is assumed that Sand B(n) are given. This elastic
structure is assumed to have N degrees-of-freedom in the dynamic response and to have
the total mass matrix M of N x N. This matrix M may be a combination of a consistent
mass matrix and a lumped mass matrix. Let KFo(S, B(n)) denote the stiffness matrix of
N x N of the structure of {S, B(n)}. For the sake of simplicity of expression, the elastic
structure consisting of Sand B(n) is referred to as "the structure of {S, B(n)} ". Let n 1( =

wi) denote the lowest l~igenvalue of the structure of {S, B(n)}, i.e. square of the fundamental
natural circular frequ~ncy WI' In order to determine n\> a nonlinear eigenvalue problem
has to be solved via a numerical procedure, e.g. the Wittrick and Williams (1971) algorithm
or the determinant-search procedure.

The governing equations of eigenvibration of order sand t of the nonlinear eigenvalue
problem for the structure {S, B(n)} may be described as follows:

[KFD(S, B(ns )) - nsMJUVi> = 0

[KFD(S, B(n,)) - n,M]U~b = 0

(1 a)

(lb)

where ns and n, are the sth and tth eigenvalues of the structure of {S, B(n)} and UVb and
U~b are the sth and tth eigenvectors of the structure of {S, B(n)}. While premultiplication
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of transposes of U~b and UVb in eqns (1a, b) and subtraction of both sides lead to
orthogonality conditions of the eigenvectors in the frequency-independent case, those
conditions can not be derived in this case, i.e.

(2)

Since modal analysis can reduce significantly computational efforts especially in a
structure with a large number of degrees-of-freedom, an approximate frequency-inde
pendent model (substitute model) is introduced here, i.e. an elastic structure consisting of
S and elastic members with frequency-independent stiffnesses B = B(OI) = {BiOI)}' This
structure is referred to as "the structure of {S, B}". The stiffness matrix KFI(S, B) of the
structure of {S, B} is derived by replacing B(O) by B in the matrix KFD(S, B(O)). It should
be kept in mind that, if the frl~quency-independentmodel has the same fundamental natural
frequency and lowest eigenmode as those of the frequency-dependent model, the response
of the latter under a dynamk disturbance with wide-band frequency characteristics can be
approximated by that of the former within a reasonable accuracy in most of cantilever
type mechanical and civil engineering structures [for example, see Tsai (1974); Bielak
(1976); Takewaki (1991)].

In this paper, it is assumed that each frequency-dependent stiffness ofB(O) is a single
valued positive function of n. Therefore, its static stiffness is positive, i.e.

BiD) > ° (forallj). (3)

Then it is apparent that the structure of {S, {BiD)}} has a positive fundamental natural
frequency. In this case, the following theorem holds. It should be noted that the following
theorem is a generalization of the second theorem in the previous paper (Nakamura and
Takewaki, 1989) (a property of BiO) as a non-increasing function has been removed).

2.1. Theorem A
Let WI ( =~) denote the fundamental natural circular frequency of the structure of

{S, B(O)} where every stiffness in B(O) is a single-valued positive function of 0. Then the
structure of {S, B( = B(OI))} has the same set of the fundamental natural circular frequency
and the fundamental eigenvector as that of the former structure.

2.2. Proof
Let U~16 and U F1 denote the lowest eigenvector of the structure of {S, B(O)} and an

eigenvector of the structur~ of {S, B}. Since the structure of {S, B(O)} has WI as the
fundamental natural frequency, it is evident that the structure of {S, B} has WI as one of
the natural frequencies. This fact may be described as follows:

(4)

Theorem A may be proved by showing that the structure of {S, B} has WI as one of the
natural frequencies, but will not have any other natural frequencies smaller than WI'

Let us define a new structure of {S, B(il)} where il is a specified positive value. The
structure of {S, B(il)} with a specified value il is different from the structure of {S, B(O)}
and is a structure consisting of only elastic members with frequency-independent stiffnesses.
The governing equation of e:igenvibration of the structure of {S, B(il)} may be expressed as
[see Lancaster (1966)]

(5)

In eqn (5), Or and U~I (k) denote the kth eigenvalue and the kth eigenvector of the structure
of {S, B(il)} with a specified value il. Since Or is the kth eigenvalue calculated for a specified
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Fig. 2. Relation between the fundamental natural frequency of a frequency-dependent structure and

that of a frequency·independent structure.

value A and can be regarded as a function of A through eqn (5), it will be denoted by
n:(A) in the sequel. If the numbering of the eigenvalues is implemented from the positive
minimum value according to the magnitude, n:(A) can be regarded as a single-valued
positive function of A.

On the other hand, the eigenvalue problem for the structure of {S, B(n)} may be
expressed as

(6)

It is apparent from eqns (5) and (6) that the value A satisfying the equation n:(A) = A is
one of the eigenvalues of the structure of {S, B(n)}. In other words, every eigenvalue of
the structure of {S, B(n)} can be characterized by the value A at the intersection of the
function, y = n:(A), and the straight line, y = A.

Now assume that the structure of {S, B} has Wt as one of the natural frequencies other
than the fundamental natural frequency. If the fundamental natural frequency of the
structure of {S, B} i, denoted by Wt(w~ = nr(nt)), the function y = nr(}.) necessarily
intersects with the straight line y = Aat a point nq smaller than n l because WI < W t and the
function y = nr(A) is a single-valued positive function. This fact is shown in Fig. 2. The
value n q at the intersection indicates one of the eigenvalues of the structure of {S, B(n)}.
Therefore, it is drawn that the structure of {S, B(n)} has a natural frequency smaller than
W t • This consequence apparently contradicts the assumption that the structure of {S, B(n)}
has the fundamental natural frequency Wt. It is, therefore, concluded that the structure of
{S,B} has Wt as the fundamental natural frequency.

Since the structure of {S, B(n)} and the structure of {S, B} have the same stiffness and
mass matrices due t,) KFD(S, B(n l )) = KF[(S, B), it is evident that they have the same
fundamental eigenve<;tor. This completes the proof.•

It should be notl~d that the fact explained in Fig. 2 can be shown to be also valid for
the case where the structure of {S, B(A)}, e.g. a two-bar truss shown in Fig. 3, has multiple
eigenvalues smaller than nj. It is noted that Bt(n) = kl(n) and 8 1 = k2 in this example.
The frequency-dependent stiffness k](n) and the frequency-independent stiffness k 2 indicate
the stiffness between an axial force and an axial elongation. An example of these stiffnesses
is shown in Fig. 4(a). The relation corresponding to Fig. 2 is shown in Fig. 4(b). At the
point of multiple eigenvalues both bars of the structure of {S, B(A)} have the same stiffness
for a special Avalue and a purely horizontal mode and a purely vertical mode become the
corresponding eigenmodes. It can be observed from Fig. 4(b) that it is sufficient to adopt
the same numbering procedure, nrcA), nT(A), ... , of the eigenvalues as stated before, i.e.
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Fig. 3. Two-bar truss consisting of a bar with a frequency-dependent stiffness and one with a
frequency-independent stiffness.

(a)
Fig. 4. (a) Frequency-dependent stiffness k[ (0) with respect to 0 and frequency-independent stiffness
k2 ; (b) relation between the fundamental natural frequency of a frequency-dependent structure and
that of a frequency-independent structure in the case where multiple eigenvalues exist in the range

smaller than 0[.
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Fig. 5. Plot of det[KFo(S, B(O) -OM] and det[KF1(S, fi) -OM] with respect to O.

numbering the order of eig~nvalues from the smallest. As in Fig. 2, y = OrCA) necessarily
intersects with y = A at Oq ~.maller than 0 1,

No restriction has been introduced on the characteristics of B(O) except their positive
definiteness and a characte::istic as a single-valued function in the proof. Therefore, BiO)
may be any single-valued positive function of O.

Figure 5 shows the plots of det [KFD(S, B(O» -OM] and det[KFI(S, B) -OM] with
rl~spect to 0 for the two-bar truss shown in Fig. 3. In this example, the following numerical
data have been used; k l (0) = c 0 + d, C = 1.0 (N' s2/m), d = 14.4 (N/m), k2 = 8.0 (N/m),
m = 5.0 (kg). The lowest eigenvalue of the frequency-dependent model has been found to
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(b)
Fig, 6, Correspondence of design spaces of frequency-dependent structures and of frequency
independent structur.;s: (a) B(Q) : single-valued non-increasing positive functions of frequency ; (b)

B(Q): single-valued positive functions of frequency,

be 0 1 = 1.6 (rad 2/s2
) md B has been determined based on 0 1 = 1.6 (rad 2/s2

), Figure 5
indicates that the frequency-dependent model and the corresponding frequency-inde
pendent model have the same lowest eigenvalue 0 1 = 1.6 (rad 2/S2) and demonstrates validity
of Theorem A.

3, CORRESPONDENCE OF DESIGN SPACES OF TWO CLASSES OF STRUCTURES

In the previous paper (Nakamura and Takewaki, 1989), it has been shown that there
exists one-to-one correspondence between the design spaces of an ordered set of elastic
frames supported by members with frequency-dependent stiffnesses and of the cor
responding ordered set of elastic frames supported by those with the corresponding fre
quency-independent stiffnesses, both with respect to fundamental natural frequency, so long
as the former stiffnesses are single-valued non-increasing positive functions of frequency [see
Fig,6(a)].

Theorem A in thi~, paper implies that the design spaces of these two classes of structures
have the relationship as shown in Fig. 6(b) in the case where there is no special restriction
on the characteristics of B(O) except their positive definiteness and a characteristic as a
single-valued function. The fact that there does not exist a one-to-one correspondence
between these two clm,ses of design spaces is evident from the first example in the previous
paper (Nakamura and. Takewaki, 1989).

Since qualification conditions on the lowest eigenmode are derivable for a certain class
of structures (Takew<Lki and Nakamura, 1995), the one-to-one correspondence between
two kinds of structure~ is expected to lead to clarification of those conditions for a frequency
dependent structure. This subject will be discussed elsewhere.

4, CONCLUSIONS

It has been shown that the second theorem introduced in the previous paper (Nak
amura and Takewaki, 1989) can be extended to the case where there is no special restriction
on the characteristics of frequency-dependent stiffnesses except their positive definiteness
and a characteristic a~; a single-valued function. This new theorem implies that the design
space of elastic structures including elastic members with frequency-dependent stiffnesses
with respect to fundamental natural frequency is included in that of elastic structures
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including elastic members with the corresponding frequency-independent stiffnesses. It is
expected that this theorem facilitates clarification of lowest-mode qualification conditions
for the frequency-dependent model with the help of the corresponding frequency-inde
pendent model.

It is also expected that, while the response analysis of a frequency-dependent model
under external loading requires an analysis in the frequency domain and any proposed
modal analysis technique cannot be used, the frequency-independent model (substitute
model) enables one to utilize the well-known modal analysis technique and would enhance
computational efficiency within a reasonable accuracy.
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